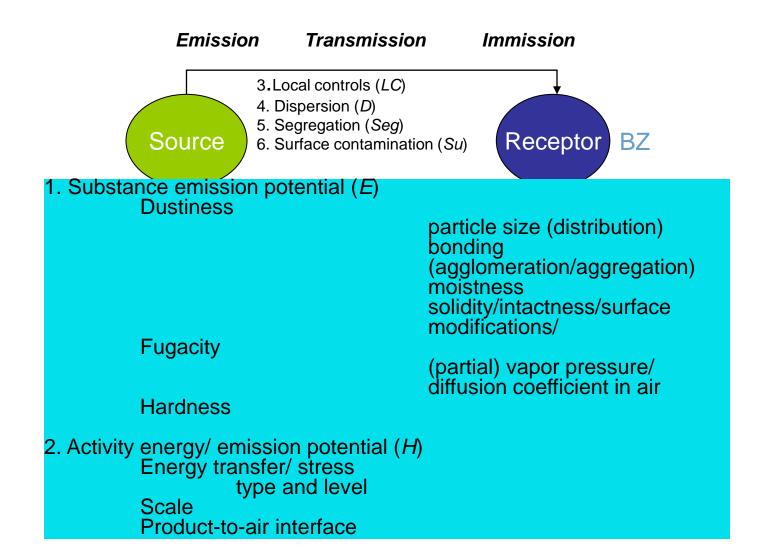


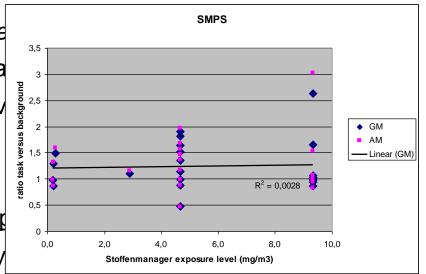
Outline


Concepts of Exposure (Models) Evidence exposure Preliminary conclusions Outlook development devices use of exposure / banding models need for data pooling

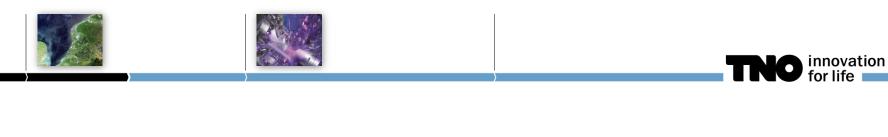
Fate of aerosols or substances

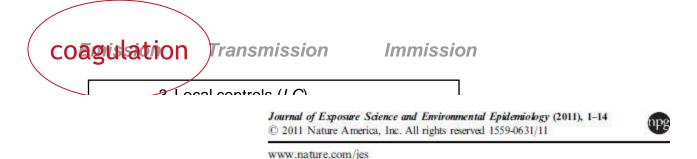
innovation for life

REACH (EU regulations for chemical substances) First Tier Inhalation Model Models suitable for nano?


Comparison of model output with datase > Basic concepts of models might be a <u>No correlation</u> could be observ particle number concentration**

1)scenarios derived <u>data set were not or</u> resolution of the models could not fully


2) the categories of the model variables are <u>not scaled to nano-materials</u> / <u>calibrated</u> resulting in loss of power of contrast


3) <u>exposure metric</u> **(mass concentration) probably not optimal

Conceptual model for assessment of inhalation exposure to manufactured nanoparticles

T. SCHNEIDER^{a,b}, D.H. BROUWER^c, I.K. KOPONEN^b, K.A. JENSEN^b, W. FRANSMAN^c, B. VAN DUUREN-STUURMAN^c, M. VAN TONGEREN^d AND E. TIELEMANS^c wass generation rate [g/min] wass concentration [mg/m^c]

Additional 'nano features'

Particle size distribution/

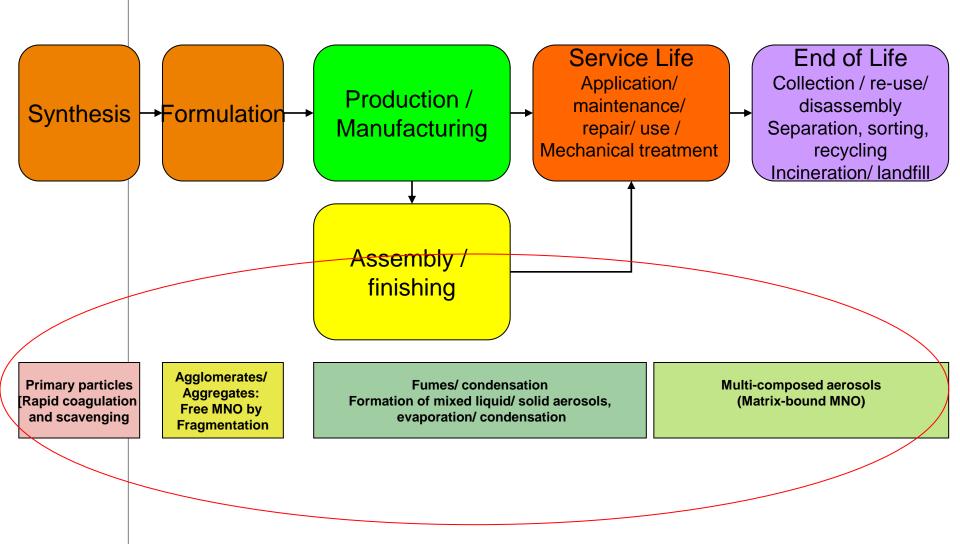
number concentration

Particle size distribution/ number concentration (active) surface area concentration

Objectives for (workplace) measurements

process	characterization	
emission	Emission rate	
transmission	Environmental/ workplace concentration	
immission	Micro-environmental/ concentration	
exposure	Exposure concentration, ie. Size fractionalized/ time-integrated BZ concentration	Outer exposure
intake -	Intake dose	surface
uptake -		Inner exposure surface
Distribution	Uptake dose	
Metabolism	Biologically relevant dose	
Excretion	Target dose	

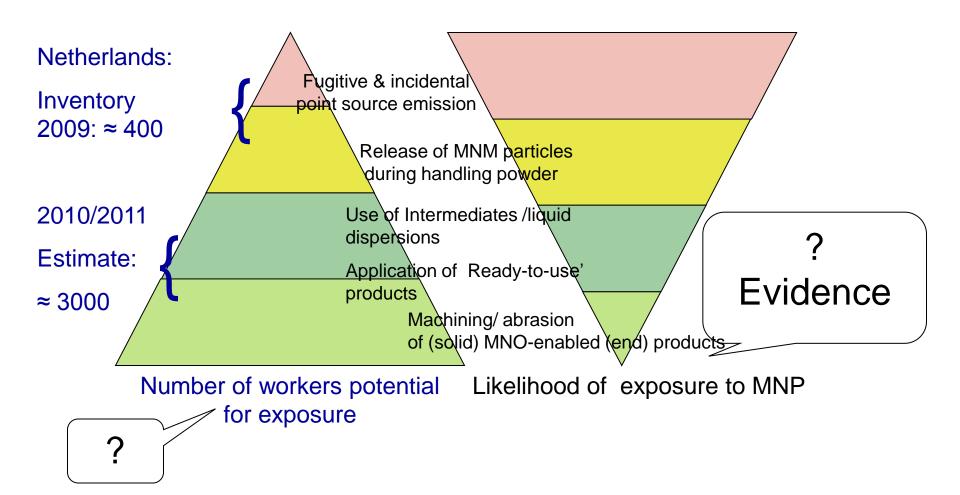
- > Potential for emission
- Understanding processes
 - > Effectiveness of control
- Compliance
- > Exposure & Risk assessment> Epidemiology


Published research papers (2004-present)

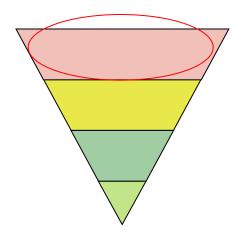
Ashach at al. (2000) ManoCare Health related aspects of nanomaterials. Chapter 5: Exposure to	Maynard, A. D. et al. (2004). Exposure to carbon nanotube at the provided of the handline
nanoparticles: measurement, modelling and agglomerate stability	of unrefined single-walled carbon nanotube material
Bello, D. et al. (2008a). Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films	Methner, M. (2008). Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations
Bello, D. et al. (2008b). Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes	Methner, M. et al. (2007). Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations.
Brouwer, D., et al. (2009). From workplace air measurement results toward estimates of exposure?	Methner, M. et al. (2010). Nanoparticle Emission Assessment Technique (NEAT) for the identification
Development of a strategy to assess exposure to manufactured nano-objects	and measurement of potential inhalation exposure to engineered nanomaterialsPart B: Results from 12 eld studies. Hiller, A. et al. (2010). Characterizing Exposures to Airborne Metals and Nanoparticle Emissions in a Refinery
Evans, D. E. et al. (2010). Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct- Reading Toplion 'real workplace' Fujitani, Y. et al. (2008). Measurement of the physical properties of aerosols in a fullerene factory for infrata 60, processing the physical properties of aerosols in a fullerene factory for	Peters, T. M. et al. (2009). Airborne monitoring to distinguish engineered nanomaterials from incidental particles for egipmental health and safety Tocussed on EA/RA Tsu, SJ. et al. (2008a). Airborne nanoparticle release astociated with the configuration of the cussed of the
Han, J. et al. (2008). Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility	Tsai, SJ. et al. (2008b). Airborne nanoparticle exposure Associated with the manual handling of nanoalumina and nanosilver in fume hoods
Kuhlbusch, T. A., et al. (2004). Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production	Yeganeh, B. et al. (2008). Characterization of airborne particles during production of carbonaceous nanomaterials
Kuhlbusch, T. A. J., and Fissan, H. (2006). Particle Characteristics in the reactor and pelletizing areas of carbon black production	Koponen IK et al (2010) Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings

First Generation/ passive Nanomaterials	Second generation/ Active Nanomaterials	Third- and Fourth Generation/ NanoSystems
Additives to solid matrices to improve physical properties	Functionalized: e.g nanoAg, nanoAu, dendrimes (diagnostics/ therapeutics)	Integrated / molecular nanosystems e.g. multi-functional nanomedicines
Carbon Black nanoTiO2 nanoSiO2 Carbon Nanotubes	Nanoscale active components of integrated circuits e.g. functionalized CNT, graphene	Atomic devices 'designed 'by human

'Nano- specific' Emission generation domains Schneider et al 2011


		THO innovation for life
Source domain	Examples	
Fugitive & incidental point source	Leaks through connections, seals etc	
emission during MNO synthesis	during MNO synthesis/ incidental release	
Release of MNO particles during	Bagging/ bag dumping	
handling/ transfer of MNO powder/ bulk	Weighing	
material		12 print 13, focular Fie 1.01 Rothgroup deventment
	Dispersion/ compounding in composites	
Intermediates		
master batch/ granules	Pouring/ injection moulding	
liquid dispersions	Pouring/ stirring/ mixing	
Ready-to-use' products	Nanofilm sprays dispenser	POTE-SEARCH
	Nano coatings	u14072509 fideseuch.com
Machining/ abrasion of (solid) MNO-	Low (abrasion) energy	
enabled (end) products/ End of Life (EoL)	High energy (sanding/ grinding, cutting)	
	High temperatures	

Assumptions exposure to Manufactured Nano Objects (MNO) (spheres, tubes, fibers)


innovation for life

Evidence likelihood: emission during synthesis

 (Simulated) workplace studies, e.g. Demou et al 2008,2009, Methner et al. 2009, 2010,Tsai et al, 2008, Asbach et al 2012 etc
 > emission of MNO is likely

nnovation

- process and characteristics determine size and concentration
- > Enclosure/RMM effective

> Experimental studies & modeling

- Rapid coagulation (concentration > 10⁶ particles/ cm³)
- > Scavenging (attachment to (larger) BG aerosols)

> Studies Dustiness & Fractioning e.g Schneider & Jensen 2008,

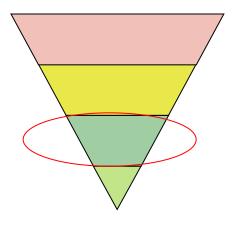
Jensen et al. 2008, Schneider & Jensen 2009; Tsai et al. 2009; 2009;

Seipenbush et al. 2009

- (few) Particles < 100 nm can be generated (size mode ≈ 200-300nm); mostly agglomerates
- Fragmentation: High shear forces needed

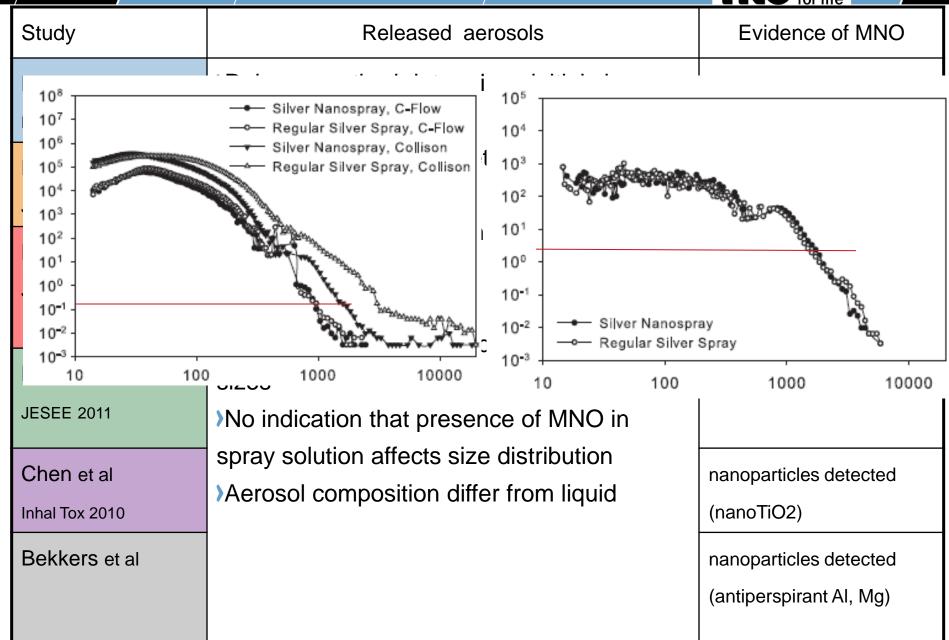
TNO innovation for life

Overview of distributions of likelihood of exposure to MNO as function of workplace exposure scenario (EU-NANOSH)


	Distribution "likelihood of exposure				
Exposure situation	"not likely" (n)	"possibly/ not excluded (n)	"likely" (n)		
Production – commercial (n=20)	9	11	0		
Production – non commercial (n=5)	2	3	0		
Down-stream-use – commercial (n=17)	11	6	0		
Down-stream-use – non commercial (n=12)	8	3	1		
Total (N=54) (Fully characterized)	30 (56%)	23 (<mark>42%)</mark>	1 (2%)		

Evidence likelihood: emission during application of 'ready-to-use'products e.g. 'nano' sprays

> Experimental studies & simulations


TNO innovation for life

Study		Spray		Release			Sampling
	N	type	method	amount (g)	time (s)	(m3)	position
Nørgaard et al Environ Sci Tech 2009	4	alcohol -based	Pump (HH) Gas container	8 -13.6	25 max	0.66	NF
Hagendorfer et al J NanoPart Res 2010	1	water based	Pump (HH) Gas container	0.68	1	0.33	Exhaust air
Lorzenz et al J NanoPart Res 2011	4	various	Gas container Pump (HH)	0.2-3.5	1-5	0.33	Exhaust air
Nazarenko et al JESEE 2011	11	various	Pump (HH) Nebulizers	?	180max		BZ
Chen et al (2010)	1	?	Gas container	?	150max	?	BZ
Bekkers et al In preparation	4	alcohol -based	Gas container	6.1 – 11.9	3 x 3	19.5	NF/FF
Quadros & Marr 2012)	3	water	Gas container		1800	0.52	Exhaust air

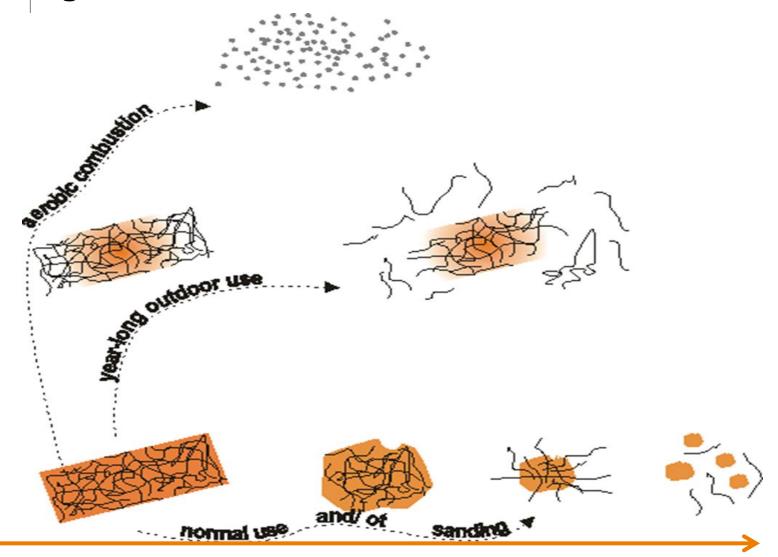
TNO innovation for life

Evidence likelihood: emission during machining (abrasion) of nano-composites or nano'end'products (and EoL activities)

> Experimental & simulation studies

> Coated surfaces

 Composites (Nana materials embedded in a polymer matrix)


innovation

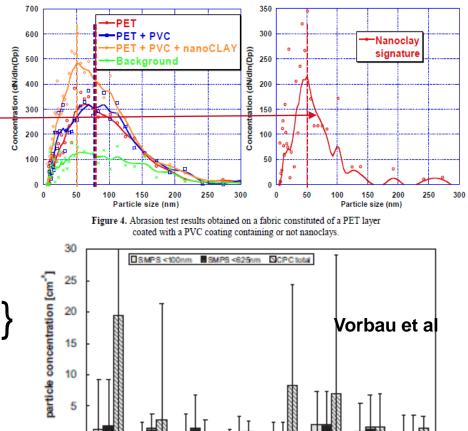
TNO innovation for life

Degradation intermediates (source Wohlleben 2012)

Mechanical energy input

	Energy		Operation	Study	Substances
	L	Н			
Nano coating	Δ		wear	Vorbau et al 2009	ZnO doped coatings
		Δ	sanding	Koponen et al 2010	Various types of paints and lacquers with different MNO
				Göhler et al. 2010	PU coating & architectural coating: MNO ZnO,Fe2O3

Conclusions from low energy abrasion studies


A1

A2

Α3

A4

- Standardized stress (TABER)
- Release of nano-size particles is observed
- Low particle concentration
- Effect of nanofiller can be observed
- The released particle mass depends on substrate and coating but there is no significant correlation to nanoparticle content
- the zinc oxide particles are still embedded in matrix

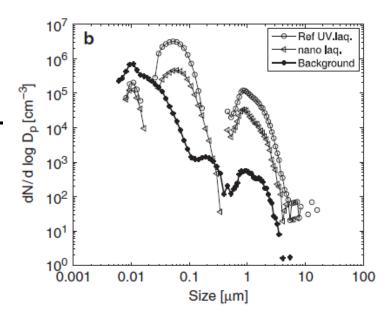
B1

B2

C1

Guiot et al)

nnovation

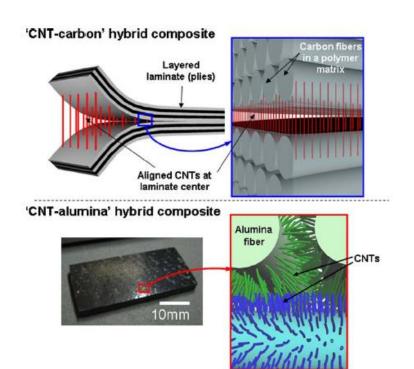


Conclusions from nano coating sanding studies

(Koponen et al 2010;Gohler et al 2010)

- In general size of release aerosols determined by input energy/stress, sander paper grain size etc
- Particle number (and size) concentration depends on type of coating e.g. PU, wall-architectural etc.
- No significant differences between MNO containing coatings and 'conventional' coatings
- Effect of hardness not yet clear
- Strong indication composition aerosols similar to matrix materials,
 - i.e. NMO are embedded

innovation


	Energy		Operation	Study	Substances
	L	н			
Nano-	Δ		wear	Guiot et al 2009	PET coated with PVC with nanoclay filler
composites		Δ	cutting-sawing	Bello et al 2009	Base- & CNT alumina
		Δ	drilling	Bello et al 2010	Base- & CNT carbon
	Δ		wear	Wohlleben et al 2011	PA + SiO2 POM + CNT Cement + CNT
		Δ	sanding	Wohlleben et al 2011	PA + SiO2 POM + CNT Cement + CNT

Conclusions from composites – machining studies

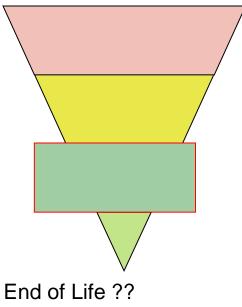
- Higher input energies, e.g. (drilling/ cutting) speed, higher process time associated with thickness result in higher particle concentration.
- Dry (cutting/ drilling) >>> wet
- Type of composite affects size distribution (not necessarily caused by CNT).
- Cutting: no free CNTs, bundles, or aggregates, CNT at fractured surface
- Drilling: aggregates of CNTs, higher temperatures: smoke, decomposition

innovation

(Bello et al, 2009, 2010)

Preline conclusions source generation domains

			for life
Source		Emission	Breathing zone
F er	source hesis	Primary particles/objects; [Rapid coagulation and scavenging]	Discrete/ detached MNO (likely)
	during powder/	Agglomerates/ Aggregates: Fragmentation	Discrete/ / detached MNO (not unlikely)
Intermediates m lic ules utarzene foresercharen 'Ready-to-use' products		Fumes/ condensation Formation of mixed liquid/ solid aerosols, evaporation/ condensation	Discrete/ / detached MNO (not unlikely)
Machining o containing e	roducts D	Multi-composed aerosols	Discrete/ detached MNO (unlikely(?))


TNO innovation for life

Summary observations/ preliminary conclusions

Likelihood of

exposure

!?

- Large variation of exposure scenarios (from Synthesis to End of Life (EoL)) Only a few scenarios has been (appropriately) measured & characterized.
- > Source domains 1& 2 : Evidence for exposure
 - Source domain 3: Indication for exposure
- Source domain 4: (including EoL): Few data for unambiguous evidence likelihood of potential for exposure.
- > Exposure data will remain scarce in future
 - > Need for exposure scenario building & modeling :
- Quantification of exposure next step
 - > Instrumentation (measure/ analyze)
 - > personal AND MNO specificity & repeated sampling
- Uncertainty risk assessment

Promising approaches and developments measurement& risk management

Measurement devices and characterization

- > Exposure Modeling
 - > Use for Control (Risk) Banding
 - Initiatives for Harmonized Measurement strategy & data pooling

'Nano specific' exposure issues	Current drawback	Developments
Coagulation processes / interaction with background aerosols occur during transport to worker after emission	No device/ samplers for Breathing Zone concentration	 -Variety of new personal samplers/ monitors and portable sensors -Modelling of coagulation/ interaction processes for workplace scenarios
No agreement on (health-) relevant exposure/ dose metric	Suite of devices needed to address all exposure metric	 -Integrated/ modular system to monitor particle concentration, surface area concentration + sampling - Surface area concentration screening device

Promising developments: New devices/ monitoring concepts (2)

'Nano specific' exposure issues	Current drawback	Developments
Identification of MN-objects key factor for background distinction	MNO-specific monitors lacking Sampling + off-line analysis (chemical/ EM) needed	-Specific monitors e.g. for nano- fibers -Size-selective (pre-selection- multi-stage) samplers Detection system (/ sensors) for deposited particles Quantification of TEM analysis
Gap between exposure monitoring and health- effects	(health-) relevant exposure assessment methods are lacking	-Modification of (personal) sampler for cell exposure -catalytic and surface-chemical aerosol monitoring

Basics Control Banding Tools

- Qualitative risk assessment in context of uncertainty
- Risk paradigm
 - > R= f { (hazard/ severity), (exposure/probability)}
- Precautionary principle
 - > Uncertainties: conservative approach risk: ____ minimize exposure

Risk/Control Banding

- Hazard (severity) and Exposure (probability) bands linked (not quantitatively) to Risk Bands
- Risk bands linked to Level of Control
 - CL 1 (Ventilation) Note: Exposure models include control measures in exposure estimates!
 - CL 2 a/b (LEV/ fume hood)
 - CL3 (Containment)
 - > CL 4a/b (Full containment/ review by specialist)

Risk Level Matrix (Example)

o innovation for life

TNK

HAZARD BANDS EXPOSURE BANDS	А	В	С	D	Е
1	3	3	3	2	1
	3 tools are mmended		els as ² socia Control	ted with	1
3	3	2	2	1	1
4	2	1	1	1	1

TNO innovation for life

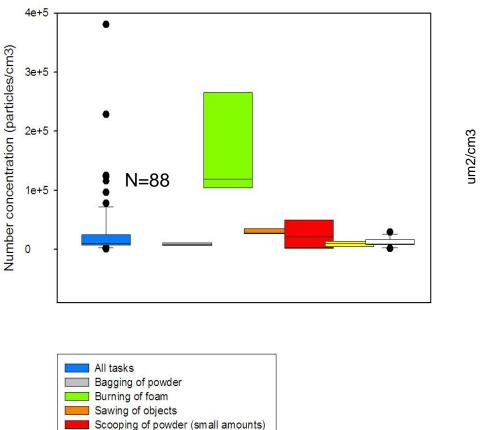
Currently available Risk Prioritization(Evaluation)/ CB tools

+	Precautionary Matrix	Risk Prioritization	Web-available spreadsheet	
	NanoCB tool (Paik & Zalk 2009)	Control Banding	Table/published paper	
	ANSES NanoCB tool	Control Banding	(Web-available) Report	
	Stoffenmanager Nano 1.0	Risk Prioritization	Web-based tool http://nano.stoffenmanager.nl/	
	NanoSafer	Risk Evaluation (semi- quantitative)	Web-based tool http://nanosafer.i-bar.dk/	

Validi	ty domains	Emissie	on Tra	nsmission	Immis	sion
		Source			Re	ceptor
		Emission Potential			Immission/	
					exposure	
		CONTROL			RISK	
		BANDING			BANDING	
	Source Domain	+				
	Synthesis	(😳)	•		•	
	Powder Handling	(😳)	•	•	•	•••
	Ready-to-use products	(😳)		•	•	
	Machining/ abrasion	(😳)			\odot	

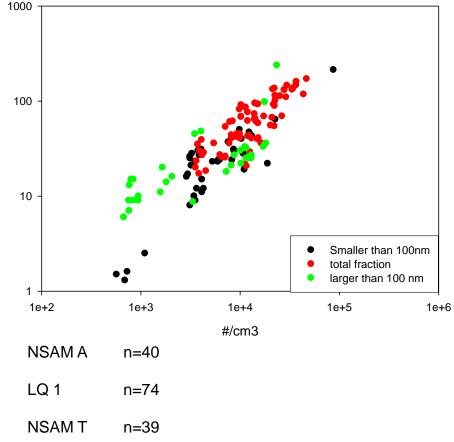
Developments **Exposure models**

- > Pooling of (future) exposure data needed:
 - > Harmonization of measurement strategy etc
 - International ("global") Workshops 2010 Irl; NL; 2011: USA
 - DATAbase Initiative in EU linkage to US initiative is aimed
 - National programs Measurement/ Campaigns (e.g. Germany, Netherlands, France, USA, ...Japan?..etc should populate database
 - Database should enable
 - scenario building
 - meta analysis
 - > model calibration & validation



innovation for life

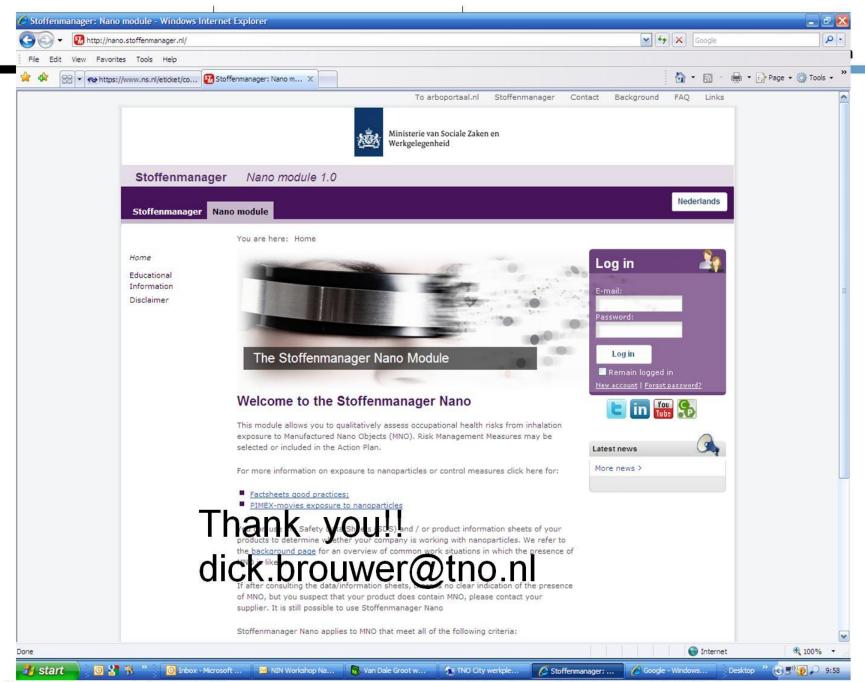
Detailed data analysis: examples NANOSH data set


TASK-based particle number concentration SMPS, particles smaller than 100 nm Correlation (DC- measured) surface area concentration-

particle number concentration

Various tasks

Blending/mixing of powder



Summary

- Many exposure scenarios with potential for exposure; only a few have been characterized
- Combination of increasing number of studies AND a systematic approach e.g. conceptual model, brings more knowledge about process of exposure
- Quantification of exposure (and risk) currently not possible (instrumentation/ characterization, metric, evaluation criteria)
 - Promising developments Instrumentation
 - Qualitative risk prioritization/ control banding tools
- Urgent need for data pooling
 - Ongoing initiatives
 - > Harmonization of data collection, analysis and reporting
 - Data base structure

Workplace Exposure to Nanomaterials

OHSI 21 Annual Conference 22-02-2012, Kilkenny